The Miller cylindrical projection is a modified Mercator projection, proposed by Osborn Maitland Miller in 1942.
Classification: Neither conformal nor equal area cylindrical
Available forms: Forward and inverse spherical
Defined area: Global, but best used near the equator
Alias: mill
Domain: 2D
Input type: Geodetic coordinates
Output type: Projected coordinates
+proj=mill Copy
+proj=mill
+lon_0
0
+R
+x_0
+y_0
Using Central meridian 90°W:
$ echo -100 35 | proj +proj=mill +lon_0=90w-1113194.91 4061217.24 Copy
$ echo -100 35 | proj +proj=mill +lon_0=90w-1113194.91 4061217.24
$$x = \lambda$$ $$y = 1.25 * \ln \left[ \tan \left(\frac{\pi}{4} + 0.4 * \phi \right) \right]$$
$$\lambda = x$$ $$\phi = 2.5 * ( \arctan \left[ e^{0.8 * y} \right] - \frac{\pi}{4} )$$
## Further reading- [Wikipedia on Miller Cylindrical](https://en.wikipedia.org/wiki/Miller_cylindrical_projection)- "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.- "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355. \right]$$
Inverse projection:
$$\lambda = x$$ $$\phi = 2.5 * ( \arctan \left[ e^{0.8 * y} \right] - \frac{\pi}{4} )$$