gis-tools-ts - v0.6.0
    Preparing search index...

    Class Mercator

    Mercator Projection

    The Mercator projection is a cylindrical map projection originating from the 16th century. It is widely recognized as the first regularly used map projection. It is a conformal projection where the equator projects to a straight line at constant scale. A rhumb line, or course of constant heading, projects to a straight line, making it suitable for navigational purposes.

    Classification: Conformal cylindrical

    Available forms: Forward and Inverse, spherical and ellipsoidal

    Defined area: Global, but best used near the equator

    Alias: merc

    Domain: 2D

    Input type: Geodetic coordinates

    Output type: Projected coordinates

    +proj=merc
    

    The Mercator projection is often used for equatorial regions and navigational charts. It is not suitable for world maps due to significant area distortions. For example, Greenland appears larger than South America in the projection, despite Greenland's actual area being approximately one-eighth of South America's.

    Examples:

    • Using latitude of true scale:
      $ echo 56.35 12.32 | proj +proj=merc +lat_ts=56.5
      3470306.37 759599.90
    • Using scaling factor:
      $ echo 56.35 12.32 | proj +proj=merc +k_0=2
      12545706.61 2746073.80

    Note: +lat_ts and +k_0 are mutually exclusive. If both are used, +lat_ts takes precedence over +k_0.

    • lat_ts: Latitude of true scale
    • k_0: Scaling factor
    • lon_0: Longitude of origin
    • x_0: False easting
    • y_0: False northing
    • ellps: Ellipsoid
    • R: Radius of the sphere

    Spherical Form

    • Forward Projection: $$x = k_0 \cdot R \cdot \lambda$$ $$y = k_0 \cdot R \cdot \psi$$ where $$\psi = \ln\left(\tan\left(\frac{\pi}{4} + \frac{\phi}{2}\right)\right)$$
    • Inverse Projection: $$\lambda = x / (k_0 \cdot R)$$ $$\psi = y / (k_0 \cdot R)$$ $$\phi = \frac{\pi}{2} - 2 \cdot \arctan\left(\exp(-\psi)\right)$$

    Ellipsoidal Form

    • Forward Projection: $$x = k_0 \cdot a \cdot \lambda$$ $$y = k_0 \cdot a \cdot \psi$$ where $$\psi = \ln\left(\tan\left(\frac{\pi}{4} + \frac{\phi}{2}\right)\right) - 0.5 \cdot e \cdot \ln\left(\frac{1 + e \cdot \sin(\phi)}{1 - e \cdot \sin(\phi)}\right)$$
    • Inverse Projection: $$\lambda = x / (k_0 \cdot a)$$ $$\psi = y / (k_0 \cdot a)$$ $$\phi = \arctan(\tau)$$ where $$\tau = \tan(\phi)$$

    Mercator Projection

    Hierarchy (View Summary)

    Implements

    Index

    Constructors

    Methods

    Constructors

    Methods

    • Mercator forward equations--mapping lon-lat to x-y

      Parameters

      • p: VectorPoint

        lon-lat WGS84 point

      Returns void

    • Mercator inverse equations--mapping x-y to lon-lat

      Parameters

      • p: VectorPoint

        Mercator point

      Returns void